The Arabidopsis MUM2 gene encodes a beta-galactosidase required for the production of seed coat mucilage with correct hydration properties.

نویسندگان

  • Gillian H Dean
  • Huanquan Zheng
  • Jagdish Tewari
  • Jun Huang
  • Diana S Young
  • Yeen Ting Hwang
  • Tamara L Western
  • Nicholas C Carpita
  • Maureen C McCann
  • Shawn D Mansfield
  • George W Haughn
چکیده

Seed coat development in Arabidopsis thaliana involves a complex pathway where cells of the outer integument differentiate into a highly specialized cell type after fertilization. One aspect of this developmental process involves the secretion of a large amount of pectinaceous mucilage into the apoplast. When the mature seed coat is exposed to water, this mucilage expands to break the primary cell wall and encapsulate the seed. The mucilage-modified2 (mum2) mutant is characterized by a failure to extrude mucilage on hydration, although mucilage is produced as normal during development. The defect in mum2 appears to reside in the mucilage itself, as mucilage fails to expand even when the barrier of the primary cell wall is removed. We have cloned the MUM2 gene and expressed recombinant MUM2 protein, which has beta-galactosidase activity. Biochemical analysis of the mum2 mucilage reveals alterations in pectins that are consistent with a defect in beta-galactosidase activity, and we have demonstrated that MUM2 is localized to the cell wall. We propose that MUM2 is involved in modifying mucilage to allow it to expand upon hydration, establishing a link between the galactosyl side-chain structure of pectin and its physical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A naturally occurring mutation in an Arabidopsis accession affects a beta-D-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage.

The Arabidopsis thaliana accession Shahdara was identified as a rare naturally occurring mutant that does not liberate seed mucilage on imbibition. The defective locus was found to be allelic to the mum2-1 and mum2-2 mutants. Map-based cloning showed that MUCILAGE-MODIFIED2 (MUM2) encodes the putative beta-D-galactosidase BGAL6. Activity assays demonstrated that one of four major beta-D-galacto...

متن کامل

The transcriptional regulator LEUNIG_HOMOLOG regulates mucilage release from the Arabidopsis testa.

Exposure of the mature Arabidopsis (Arabidopsis thaliana) seed to water results in the rapid release of pectinaceous mucilage from the outer cells of the testa. Once released, mucilage completely envelops the seed in a gel-like capsule. The physical force required to rupture the outer cell wall of the testa comes from the swelling of the mucilage as it expands rapidly following hydration. In th...

متن کامل

The Arabidopsis transcription factor LUH/MUM1 is required for extrusion of seed coat mucilage.

During differentiation, the Arabidopsis (Arabidopsis thaliana) seed coat epidermal cells secrete mucilage composed primarily of rhamnogalacturonan I that is extruded from the seed coat upon imbibition. The mucilage of the mucilage modified1 (mum1) mutant contains rhamnogalacturonan I that is more highly branched and lacks the ability to be extruded when exposed to water. Our cloning of the MUM1...

متن کامل

AtBXL1 encodes a bifunctional beta-D-xylosidase/alpha-L-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells.

Following pollination, the epidermal cells of the Arabidopsis (Arabidopsis thaliana) ovule undergo a complex differentiation process that includes the synthesis and polar secretion of pectinaceous mucilage followed by the production of a secondary cell wall. Wetting of mature seeds leads to the rapid bursting of these mucilage secretory cells to release a hydrophilic gel that surrounds the seed...

متن کامل

Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis.

In Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type producing extracellular pectinaceous mucilage and a volcano-shaped secondary cell wall. Differentiation involves a regulated series of cytological events including growth, cytoplasmic rearrangement, mucilage synthesis, and secondary cell wall production...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 2007